

COLORADO
Department of Transportation

SH-71
 UPDATE

AGENDA

1. CORRIDOR OVERVIEW
2. INTERCEPT SURVEY RESULTS
3. TRAVEL DEMAND MODELING / PROJ ECTED GROWTH RATE RESULTS
4. DRAW FROM I-25
5. BENEFIT/ COST
6. PRIORITY CRITERIA \& CURRENT PROJ ECT LIST
7. STEPS

CORRIDOR OVERVIEW

Safety/ Mobility/

Economic

71 from Limon north to the CONE line is a segment (specifically the Heartland Expressway) of the International Ports-to-Plains(P2P) Corridor, which spans from Mexico to Canada. 71 is a significant north-south freight corridor for Colorado carrying agribusiness and energy, as well as providing connectivity to East-West interstates and state highways. 71 is the only segment of the P2P Alliance Corridor that remains unimproved.

Important Link in the Overall System and in the Colorado System/Vision

HEARTLAND EXPRESSWAY

INTERCEPT SURVEY RESULTS

- Improvements could lure north/south truck traffic to either SH-71
- Improved travel time and roadway conditions were most influential reasons to draw truck traffic
- Rideability/Pavement Condition was identified as the most important roadway condition that draws truckers to a corridor
- Passing Lanes, Shoulders, Trucker Amenities were evenly ranked as the next most important draw for truckers

TRAVEL DEMAND MODELING

Methodology

- Established model to capture future growth of MultiUnit Trucks traffic
- Select link analysis provides information of where traffic comes from and goes to at selected links.
- Utilized the WSP National Truck Model and the Colorado State Model
- Long term analysis through 2040
- Based on Freight Analysis Framework (FAF), version 4.2
- Covered 43 commodities
- Multi-Unit Trucks (MUTs) alone were modeled.
- 2016 base year was validated to recent MUT counts

160
 TRAVEL DEMAND MODELING

TRAVEL DEMAND MODELING

TRAVEL DEMAND MODELING

Travel Times Scenario 1 (in minutes)
I-25 Congested Conditions

TRAVEL DEMAND MODELING

Difference between Scenario 2 and Scenario 1
Minutes Saved

TRAVEL DEMAND MODELING

Human Factors

- Because it's difficult to model peoples choices, Daily Vehicle Miles Traveled (DVMT) and AADT were used for analysis
- Compared before-and-after volumes of improvements on US 287 (improvements were completed in 2012)
- Growth on CO 71 is below the statewide average

Yearly Growth Rate Comparison

| | 5-Year Period
 $(2012-2017)$ | 15-Year Period
 $(2002-2017)$ |
| :--- | ---: | ---: | ---: |
| Statewide (All DVMT) | 3.1% | $\mathbf{1 . 6 \%}$ |
| Statewide (Truck DVMT) | 2.3% | 0.6% |
| SH 71 (Total AADT) | 1.9% | -0.6% |
| US 287 (Total AADT) | 3.0% | 2.0% |
| US 385 (Total AADT) | -1.5% | -0.7% |

TRAVEL DEMAND MODELING

- Project improvements should meet the vision, safety, economic vitality, and move us toward a reasonable and achievable in the near future ultimate section.

TRAVEL DEMAND MODELING

Applying a HYBRID growth rate (8\% MUT, 3\% Psg Veh) using HCM Capacity

 analysis SH 71 would reach capacity

Level of Service C: Restricted flow that remains stable but with significant interactions with others in the traffic stream. The general level of comfort and convenience declines noticeable at this level.

Level of Service D: High-density flow in which speed and freedom to maneuver are severely restricted and comfort and convenience have declined even though flow remains stable.

Existing Conditions in 2059

4 lane with
a center turn lane
In 2109

> Level of Service E: Unstable flow at or near capacity levels with poor levels of comfort and

convenience.

Improvements modeled by increasing the congestion (i.e. reduce speed $0,7, \& 10 \%$ throughout the Front Range and increasing the speed on SH71 (to 70, 75, $\& 80 \mathrm{mph})$.

DRAW FROM I-25 (Front Range)

Benefit / Cost Analysis

Benefits+

Value of travel time savings for truck vehicle hours traveled
Value of crash reduction based on crash modification factors and monetized crash type

Disbenefits-

Value of emissions and vehicle operating costs for truck vehicle miles traveled
(1)Based on USDOT Benefit-Cost Analysis guidance for discretionary grant application

Capital Costs

Based on engineering estimates for three different highway templates:
Shoulders + Passing Lane
Four-Lanes with Center Turn

Operating and Maintenance Costs
Based on existing expenditures

Benefits / Cost

- This analysis compares the benefits and costs of the SH-71 Improvement Project, under three different Build alternatives, to a No-Build alternative in which no project is undertaken. It also relies on two different cost estimates and a mid-range point for each scenario.
- Benefit Cost Ratio (BCR): The BCR is calculated by dividing the present value of incremental benefits by the present value (7\%discount rate) of incremental costs. A $B C R$ greater than 1.0 indicates that project's benefits exceed its costs, while a BCR less than 1.0 signifies that the project's monetizable benefits fall short

Scenario	 Passing Lanes	4-Lane Highway	Interstate Freeway
Low Cost	1.91	1.20	0.35
Medium Cost	1.40	1.00	0.30
High Cost	1.10	0.86	0.26

PRIORITY CRITERIA \& CURRENT PROJECT LIST

PROJ ECTS ARE BEING GROUPED BY TYPE OF FUNDING AND THEN PRIORITIZED BY TECHNICAL ADVISORY GROUP VETTED CRITERIA

Project Type		Example Projects
	Maintenance	Bridge widening, bridge replacements, bridge repair, guardrail
Safety	Pavement rehabilitiation, drainage improvements, culverts, asset replacement	
Misellaneous	Other	Signing, pavement markings, delineation, shoulder widening, flatten curves, superelevation, rumble strips

Priority Criteria	
Safety	25%
Freight Mobility	20%
System Integrity	15%
Local Stakeholder Support and Economic Development	25%
Corridor Vision	15%

PRIORITY CRITERIA \& CURRENT PROJECT LIST

	\#	From	TO	Dascription	Cost
Top Safety	8	112.3	113.0	HFST, shoulders, rumble strips, signing, striping	\$ 1,060,000 to \$ 2,020,000
Projects for 71D	10	114.9	115.9	HFST, shoulders, rumble strips, signing, striping	$\begin{aligned} & \$ 1,510,000 \text { to } \\ & \$ 2,880,000 \end{aligned}$
(Segment 3)	23	147.65	147.85	HFST, shoulders, rumble strips, signing, striping	$\begin{aligned} & \text { \$ 310, } 000 \text { to } \\ & \text { \$ 580, } 000 \end{aligned}$
	26	153.44	173.52	Pavement rehabilitation and shoulders	$\begin{aligned} & \text { \$ 30,330,000 to } \\ & \$ 57,840,000 \end{aligned}$
	36	171.63	172.5	Add shoulders, rumble strips, signing striping	$\begin{aligned} & \$ 1,320,000 \text { to } \\ & \$ 2,510,000 \end{aligned}$

PRIORITY CRITERIA \& CURRENT PROJECT LIST

Results -
Top Traffic
Projects for
71D
(Segment 3)

\#	From	T0	Description	Cost
6	108.5	110.5	Northbound climbing Iane 108. 5-109.2 combined with north and southbound passing lane 109. 75-110. 5	$\begin{aligned} & \$ 6,100,000 \text { to } \\ & \$ 8,440,000 \end{aligned}$
35	170.5	171.25	Southbound passing lane	$\begin{aligned} & \$ 1,760,000 \text { to } \\ & \$ 2,700,000 \end{aligned}$
25	149.2	149.95	North and southbound passing lanes	$\begin{aligned} & \$ 2,290,000 \text { to } \\ & \$ 3,170,000 \end{aligned}$
28	157.1	157.85	North and southbound passing lanes	\$ 2,290,000 to \$ 3,170,000
7	111.5	112.1	Northbound climbing lane	$\begin{aligned} & \$ 2,010,000 \text { to } \\ & \$ 2,920,000 \end{aligned}$

PRIORITY CRITERIA \& CURRENT PROJECT LIST

Results -
Top
Maintenance
Projects for
71D
(Segment 3)

\#	From	To	Description	Cost
3	102.3	102.3	Minor repairs to G-22-BB	$\begin{aligned} & \text { \$ 680, } 000 \text { to } \\ & \$ 990,000 \end{aligned}$
17	101.97	138. 01	Mill, overlay, add shoulders (gap projects)	$\begin{aligned} & \$ 35,280,000 \text { to } \\ & \$ 54,756,000 \end{aligned}$
40	138.01	174.36	Mill, overlay, add shoulders (gap projects)	$\begin{aligned} & \$ 35,280,000 \text { to } \\ & \$ 54,756,000 \end{aligned}$
2	102.0	108.0	Resurfacing	$\begin{aligned} & \$ 3,060,000 \text { to } \\ & \$ 7,980,000 \end{aligned}$
37	171.85	171.85	Replace structure 071D171970BR	$\$ 2,630,000$ to \$ 5,050,000

PRIORITY CRITERIA \& CURRENT PROJECT LIST

Projects for 71E (Segment 2) - not yet prioritized					
\#	From	To	Description	Cost	
1	176.44	176.44	Replace HMA bridge deck surface	\$ 835,000	\$ 835,000
2	176.9	181.35	Add 8' shoulder	\$ 1, 250,000	\$ 5, 562, 500
3	181.27	182.56	Mill and overlay	\$ 920,000	\$ 1, 186, 800
4	182.56	185.16	Mill, overlay, add 8' shoulder	\$ 2, 195,000	\$ 5, 707,000
5	187.21	187.79	Mill and overlay	\$ 920,000	\$ 533,600
6	187.79	190.38	Mill, overlay, add 8' shoulder	\$ 2, 195,000	\$ 5, 685, 050
7	190.38	193.16	Mill and overlay	\$ 920,000	\$ 2,557, 600
8	193.16	195.36	Mill, overlay, add 8' shoulder	\$ 2, 195, 000	\$ 4, 829,000

PRIORITY CRITERIA \& CURRENT PROJECT LIST

Projects for 71F (Segment 1) - not yet prioritized

$\#$	From	To	Description	Cost		
10	207.72	209.1	Mill and overlay	$\$$	920,000	$\$$
11	209.1	212.66	Mill, overlay, add 8' shoulder	$\$, 269,600$		
12	211.63	211.63	Widen or replace structure B-22-H	$\$$	$2,195,000$	$\$$
13	217.1	217.9	Add northbound passing lane	$\$, 814,200$		
14	224.3	225	Add northbound passing lane	$\$$	$2,970,000$	$\$$
15	225.2	227	Add northbound passing lane	$\$$	$2,840,000$	

STEPS ACCOMPLISHED

a) FREIGHT DIVERSION STUDY
a) INTERCEPT SURVEY
b) POST FINAL REPORT AND EXECUTIVE SUMMARY TO CDOT STUDIES AND ASSESSMENTS WEPBPAGE: https:/ / www. codot. gov/ projects/ projects/ studies-assessments
c) DESIGN LEVEL LIDAR SURVEY
d) PROJ ECT PRIORITIZATION SEG. 3
e) SELECT PROJ. CONCEPTUAL DESIGN AND ESTIMATES

NEXT STEPS
a) FINALIZE PROJ ECT PRIORITIZATION FOR ALL SEGMENTS
b) PROJ ECT SELECTION
a) Inclusion in upcoming asset management projects as appropriate.
b) Pursue Funding as appropriate.

c) STAKEHOLDER'S PRESENTATIONS

